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Animal models of Parkinson’s disease (PD) have shown that key mechanisms of corti-
cal plasticity such as long-term potentiation (LTP) and long-term depression (LTD) can be
impaired by the PD pathology. In humans protocols of non-invasive brain stimulation, such
as paired associative stimulation (PAS) and theta-burst stimulation (TBS), can be used to
investigate cortical plasticity of the primary motor cortex. Through the amplitude of the
motor evoked potential these transcranial magnetic stimulation methods allow to mea-
sure both LTP-like and LTD-like mechanisms of cortical plasticity. So far these protocols
have reported some controversial findings when tested in PD patients. While various stud-
ies described evidence for reduced LTP- and LTD-like plasticity, others showed different
results, demonstrating increased LTP-like and normal LTD-like plasticity. Recent evidence
provided support to the hypothesis that these different patterns of cortical plasticity likely
depend on the stage of the disease and on the concomitant administration of L-DOPA.
However, it is still unclear how and if these altered mechanisms of cortical plasticity can be
taken as a reliable model to build appropriate protocols aimed at treating PD symptoms by
applying repetitive sessions of repetitiveTMS (rTMS) or transcranial direct current stimula-
tion (tDCS).The current article will provide an up-to-date overview of these issues together
with some reflections on future studies in the field.
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INTRODUCTION
Synaptic plasticity, in the form of long-term depression (LTD)
and long-term potentiation (LTP), represents an intriguing mech-
anism that allows the encoding and retention of memories via
the activity-dependent functional and morphological remodeling
of synapses (1). Experimental models of Parkinson’s disease (PD)
have consistently shown that dopamine plays a key role in the mod-
ulation of the altered mechanisms of synaptic plasticity detected
in the basal ganglia (2, 3). In particular there is evidence suggesting
a direct link between the degeneration of the substantia nigra and
the impairment of neuroplasticity (3): the impairment in LTD and
LTP induction is paralleled by dopamine depletion and is related to
the symptoms onset (2, 4). Consistently, treatment with dopamine
is also able to restore LTP expression (5). Another form of synaptic
plasticity, named “depotentiation,” which results from the reversal
of established LTP by a low-frequency (LF) stimulation protocol,
was also found to be dependent on dopaminergic signaling and,
interestingly, to be lost selectively in an experimental model of
l-DOPA-induced dyskinesia (LID) (5).

In recent years an emerging amount of work was aimed at
investigating these fascinating processes in vivo, directly in patients
affected by PD. For instance, Prescott et al. (6) recorded evoked
field potentials straight in the substantia nigra pars reticulata of
PD patients undergoing therapeutic implantation of deep brain
stimulating electrodes in the subthalamic nucleus. In these patients
high-frequency (HF) stimulation did not induce a lasting change
in field potential amplitude in the OFF state. The administration of

l-DOPA potentiated the field potential amplitudes (LTP), provid-
ing an important evidence that PD patients have DOPA-dependent
impaired mechanisms of LTP in the basal ganglia circuits.

CORTICAL PLASTICITY IN PD PATIENTS
In PD patients, these forms of altered synaptic plasticity have been
investigated more extensively in the primary motor cortex (M1)
using various protocols of non-invasive brain stimulation (NIBS)
such as paired associative stimulation (PAS) (7) and theta-burst
stimulation (TBS) (8). PAS- and TBS-related changes in corti-
cospinal excitability, as indexed by the increase or decrease in the
motor evoked potential (MEP) amplitude, are thought to reflect
respectively LTP-like or LTD-like phenomena (8). These meth-
ods have been used in the recent past to study the profile of M1
cortical plasticity in patients with PD in different experimental
conditions (9–18).

PAS PROTOCOL
Paired associative stimulation take advantage of the principles of
associative plasticity by repeatedly coupling a peripheral afferent
input from the median nerve with a cortical TMS pulse applied
over M1 with an inter-stimulus interval of 10–25 ms (7). This pro-
tocol normally decreases or enhances M1 excitability for at least
1 h, resembling mechanisms of Hebbian-like LTP or LTD mecha-
nisms (7, 19–22). Early studies in patients with PD have reported
abnormally reduced responses to PAS, compared with healthy sub-
jects, pointing to a decreased cortical associative plasticity (10, 11).
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Koch Cortical plasticity and NIBS treatment

For instance, in a seminal study, Morgante et al. (10) showed
that PAS significantly increased MEP size in controls but not
in patients in OFF medication. l-DOPA restored the potentia-
tion of MEP amplitudes induced by PAS in the non-dyskinetic
group but not in the dyskinetic group. In contrast, another study
reported as opposite enhanced responses to the same PAS proto-
col in PD patients (9). Recent evidence shed further light to these
apparently contrasting results, by applying systematically PAS in
both hemispheres in a large sample of “de novo” PD patients
characterized by common asymmetric symptoms (23). LTP-like
plasticity was more impaired in the “more affected” hemisphere,
while there was an increased cortical associative plasticity in the
“less-affected” hemisphere, thus suggesting compensatory func-
tional sensorimotor reorganization in the early phase of PD (23).
A debated question is whether these alterations of cortical plastic-
ity are dependent on the underlying pathology or on the history
of medication with l-DOPA. In a recent study Kacar et al. (24)
aimed to address this issue by comparing responses to facilitatory
PAS in two cohorts of advanced PD patients: one included chroni-
cally and optimally treated patients while the other group included
patients with advanced PD who had never taken dopaminergic
drugs. Again, the facilitatory responses to PAS were reduced in both
cohorts of chronically treated and drug naïve PD patients when
compared with healthy subjects. Importantly, this study indicates
that in advanced PD, cortical associative plasticity seems to be
impaired regardless of a previous chronic exposure to l-DOPA.

TBS PROTOCOL
Similarly to what observed with PAS, TBS protocols failed to
induce plasticity in patients with PD in most studies (12, 13).
Suppa et al. (13) tested the effects of intermittent theta-burst
stimulation (iTBS), a technique used to induce LTP-like plasticity
in M1, in patients with PD, OFF and ON dopaminergic therapy,
with and without l-DOPA -induced dyskinesias (LIDs). In these
patients iTBS failed to increase MEP responses in all conditions,
suggesting a lack of iTBS-induced LTP-like plasticity in M1 in
PD regardless of patients’ clinical features. Similar results were
obtained by another group (25). Kishore and colleagues tested
in a sample of de novo PD patients the effects of the iTBS and
the cTBS protocols, the latter known to induce LTD (8). In these
de novo PD patients there was no plasticity for both protocols.
Acute l-DOPA challenge did not improve plasticity in either M1
cortices, though motor signs of PD improved. Thus these find-
ings showed that an early, severe, and bilateral loss of plasticity
in M1 in de novo PD patients is a primary disease-related cor-
tical dysfunction. However, these results were in contrast with
another similar study in which iTBS was performed in a sample
of PD patients in ON and OFF l-DOPA therapy. PD patients had
similar increases in MEP amplitude compared to baseline over
the course of 60 min. Changes in intracortical circuits induced
by iTBS were also comparable in the different groups, showing
that iTBS produced similar effects on cortical excitability for PD
patients and controls (18). These apparent discrepancies might
be due likely to the different stages of disease of the patients
recruited in the different studies. In a related work Kishore et
al. (17) tested more systematically the effects of different TBS
protocols in both OFF and ON l-DOPA therapy conditions in
different groups of advanced PD patients. These were stratified

according to their motor response to l-DOPA into stable respon-
ders, fluctuating non-dyskinetics and fluctuating dyskinetics. In
OFF, stable responders showed both types of plasticity, fluctuating
non-dyskinetics had LTP but no LTD while fluctuating dyskinet-
ics lost both types of plasticity. These data suggest that there is
a gradual loss of chronic treatment benefit on plasticity, particu-
larly for LTD, when motor complications develop. Moreover, an
acute non-physiological dopamine boost seems to have a nega-
tive effect on cortical plasticity as disease advances. This loss of
cortical plasticity with progression of disease may contribute to
the pathophysiology of motor complications. Similar results were
obtained in another study in which PD patients with and without
LIDs were compared. PD patients without LIDs had normal LTP-
and depotentiation-like effects when they took their full dose of
l-DOPA, but there was no LTP-like effect when they were on half
dose of l-DOPA (14). In contrast, patients with LID could be suc-
cessfully potentiated when they were on half their usual dose of
l-DOPA; however, they were unresponsive to the depotentiation
protocol. These latter results suggest that depotentiation is abnor-
mal in the motor cortex of patients with PD with LID and that
their LTP-like plasticity is more readily affected by administration
of l-DOPA than their clinical symptoms (14).

Taken together these recent studies on neuroplasticity in PD
patients suggest that:

• The mechanisms of LTP-like and LTD-like cortical plasticity can
be impaired since the early phases of the disease (16, 23);

• The response to the different plasticity-inducing protocols and
to dopamine administration are not fixed but may vary with
the disease progression and with onset of motor complications
(14, 16).

• These alterations cannot be promptly restored by dopamine
administration in all conditions (13, 16);

• The response to the plasticity-inducing protocols seem not to
be strictly associated to the clinical improvement induced by
dopamine administration (13, 16).

NIBS AS A TREATMENT FOR PD
As showed by the previous paragraph some NIBS methods are
useful to assess cortical plasticity in PD patients. However, NIBS
tools may also have a relevant clinical impact when applied repeat-
edly over several weeks. In the past years there have been quite a
lot of published studies aiming at reducing motor impairment in
PD by means of NIBS techniques such as repetitive TMS (rTMS).
rTMS at frequencies of 5 Hz and higher can enhance motor cortex
excitability (26) whereas lower frequencies rTMS (1 Hz and lower)
can transiently depress cortical excitability (27). Several random-
ized controlled trials used rTMS to treat the PD motor symptoms
[(28) for a review]. These studies are extremely numerous, but
are characterized by a large heterogeneity of cortical targets, stim-
ulation protocols, and patients’ populations (28). In general the
sample size was small and clinical effects are unlikely to be detected
because of insufficient power. This, together with the variability of
patient profile (various pharmacological treatment, disease dura-
tion, severity, and type of motor symptoms) made the emergence
of consensus for any stimulation procedures extremely difficult. In
general, while M1 was the most frequently studied target, clinical
efficacy has been more modest using this target compared to the
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supplementary motor area (SMA) target of which value have been
emphasized by recently published large multicenter trials (29).

Some negative results have been reported in controlled trials
based on repeated sessions of LF rTMS of M1 [i.e., Ref. (30)]. On
the other hand, the majority of the studies have tested the effects
of repeated sessions of HF rTMS of M1 in PD patients. Some of
these studies supported some therapeutic value of HF rTMS of M1
in PD, showing a global improvement of UPDRS part III motor
scores, especially regarding movement speed or also gait velocity,
following the focal stimulation of M1 hand representation (31,
32) or the bilateral stimulation of a larger M1 area (33–35). Such
improvement could be related to an increase in dopamine release,
although these results also suggest the possibility of placebo effects
(34, 36). HF rTMS has been also applied over the leg area of M1
and followed by 30 min of treadmill training over 4 weeks, result-
ing in an increased walking speed (37). On the other hand only
a few studies have reported negative results of HF rTMS of M1
in PD (38, 39). Moreover, two recent studies tested the effects of
repeated sessions of iTBS of M1, with some controversial results
on the clinical changes induced by the stimulation (40).

A promising alternative approach seems to be provided by stim-
ulation of the SMA (41, 42). In a multicenter trial, PD patients
were treated with 5 Hz rTMS once a week, during 8 weeks. The
first report (41) showed some improvement of the global UPDRS
score, while the second (42) indicated that the clinical improve-
ment was restricted to the symptoms of bradykinesia. A recent
multicenter trial confirmed that rTMS of SMA can have some clin-
ical impact. The authors found an improvement on the UPDRS
scores following a prolonged protocol of weekly performed LF
rTMS of SMA on motor symptoms of PD (29), but not with HF
rTMS. Interestingly, rTMS of the SMA has also been shown able
to improve LID (43, 44). At this regard, an alternative approach
could be provided by cerebellar stimulation. Reduction of peak-
dose dyskinesia for up to 4 weeks was described following repeated
sessions of excitability-decreasing cTBS bilaterally delivered to the
lateral cerebellum (45). The rationale for cerebellar stimulation
arises from the possibility to modulate cerebello-thalamo-cortical
circuits (17, 46, 47).

To sum up, the current literature on therapeutic trials of rTMS
in PD patients is still ambiguous, and the search for the most
effective protocol is still on its way. Moreover there is almost no
evidence that the clinical improvement induced by NIBS could be
related to a restoration of the altered mechanisms of cortical plas-
ticity described above. The next large multicenter trials should be
designed in order to take in account the inter-individual variability
observed in PD patients regarding the profile of cortical plasticity
and its modulation by dopamine (16). The effects of the differ-
ent protocols might be stratified according to the different profile
of LTP-like and LTD-like alterations. This could allow identify-
ing eventual responders or non-responder to a specific protocol
of NIBS.
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